p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23⋊C8⋊17C2, C24.3(C2×C4), C4.9(C23⋊C4), (C22×D4).6C4, (C22×C4).726D4, C24.4C4⋊18C2, C22.12(C8○D4), C22⋊C8.157C22, C23.41(C22⋊C4), C23.172(C22×C4), (C23×C4).201C22, (C22×C4).435C23, C22.1(C4.D4), (C2×C4⋊C4).13C4, (C2×C22⋊C8)⋊4C2, (C2×C4⋊D4).1C2, C2.10(C2×C23⋊C4), C2.8(C2×C4.D4), (C2×C4).1132(C2×D4), (C22×C4).12(C2×C4), (C2×C4).71(C22⋊C4), C2.9((C22×C8)⋊C2), (C2×C22⋊C4).88C22, C22.153(C2×C22⋊C4), SmallGroup(128,203)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.(C2×C4)
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e2=f4=d, ab=ba, ac=ca, eae-1=ad=da, faf-1=abc, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, ef=fe >
Subgroups: 412 in 161 conjugacy classes, 48 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C22⋊C8, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C22×C8, C2×M4(2), C23×C4, C22×D4, C22×D4, C23⋊C8, C2×C22⋊C8, C24.4C4, C2×C4⋊D4, C24.(C2×C4)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C4.D4, C2×C22⋊C4, C8○D4, (C22×C8)⋊C2, C2×C23⋊C4, C2×C4.D4, C24.(C2×C4)
(1 10)(2 22)(3 23)(4 13)(5 14)(6 18)(7 19)(8 9)(11 32)(12 25)(15 28)(16 29)(17 27)(20 30)(21 31)(24 26)
(2 32)(4 26)(6 28)(8 30)(9 20)(11 22)(13 24)(15 18)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 14 5 10)(2 15 6 11)(3 16 7 12)(4 9 8 13)(17 27 21 31)(18 28 22 32)(19 29 23 25)(20 30 24 26)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,10)(2,22)(3,23)(4,13)(5,14)(6,18)(7,19)(8,9)(11,32)(12,25)(15,28)(16,29)(17,27)(20,30)(21,31)(24,26), (2,32)(4,26)(6,28)(8,30)(9,20)(11,22)(13,24)(15,18), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,10)(2,22)(3,23)(4,13)(5,14)(6,18)(7,19)(8,9)(11,32)(12,25)(15,28)(16,29)(17,27)(20,30)(21,31)(24,26), (2,32)(4,26)(6,28)(8,30)(9,20)(11,22)(13,24)(15,18), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,10),(2,22),(3,23),(4,13),(5,14),(6,18),(7,19),(8,9),(11,32),(12,25),(15,28),(16,29),(17,27),(20,30),(21,31),(24,26)], [(2,32),(4,26),(6,28),(8,30),(9,20),(11,22),(13,24),(15,18)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,14,5,10),(2,15,6,11),(3,16,7,12),(4,9,8,13),(17,27,21,31),(18,28,22,32),(19,29,23,25),(20,30,24,26)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | ··· | 4F | 4G | 4H | 4I | 8A | ··· | 8H | 8I | 8J | 8K | 8L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | C8○D4 | C23⋊C4 | C4.D4 |
kernel | C24.(C2×C4) | C23⋊C8 | C2×C22⋊C8 | C24.4C4 | C2×C4⋊D4 | C2×C4⋊C4 | C22×D4 | C22×C4 | C22 | C4 | C22 |
# reps | 1 | 4 | 1 | 1 | 1 | 2 | 6 | 4 | 8 | 2 | 2 |
Matrix representation of C24.(C2×C4) ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 16 | 2 |
0 | 0 | 5 | 5 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 10 | 7 | 16 | 0 |
0 | 0 | 0 | 7 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 16 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 2 |
0 | 0 | 0 | 0 | 16 | 1 |
0 | 2 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 5 | 1 | 0 |
0 | 0 | 12 | 12 | 1 | 15 |
0 | 0 | 0 | 0 | 0 | 10 |
0 | 0 | 0 | 0 | 12 | 10 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,10,5,0,0,16,0,0,5,0,0,0,0,16,0,0,0,0,0,2,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,10,0,0,0,0,1,7,7,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,16,16,0,0,0,0,2,1],[0,15,0,0,0,0,2,0,0,0,0,0,0,0,12,12,0,0,0,0,5,12,0,0,0,0,1,1,0,12,0,0,0,15,10,10] >;
C24.(C2×C4) in GAP, Magma, Sage, TeX
C_2^4.(C_2\times C_4)
% in TeX
G:=Group("C2^4.(C2xC4)");
// GroupNames label
G:=SmallGroup(128,203);
// by ID
G=gap.SmallGroup(128,203);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,723,352,1123,851,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^2=f^4=d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*b*c,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations