Copied to
clipboard

G = C24.(C2×C4)  order 128 = 27

3rd non-split extension by C24 of C2×C4 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C23⋊C817C2, C24.3(C2×C4), C4.9(C23⋊C4), (C22×D4).6C4, (C22×C4).726D4, C24.4C418C2, C22.12(C8○D4), C22⋊C8.157C22, C23.41(C22⋊C4), C23.172(C22×C4), (C23×C4).201C22, (C22×C4).435C23, C22.1(C4.D4), (C2×C4⋊C4).13C4, (C2×C22⋊C8)⋊4C2, (C2×C4⋊D4).1C2, C2.10(C2×C23⋊C4), C2.8(C2×C4.D4), (C2×C4).1132(C2×D4), (C22×C4).12(C2×C4), (C2×C4).71(C22⋊C4), C2.9((C22×C8)⋊C2), (C2×C22⋊C4).88C22, C22.153(C2×C22⋊C4), SmallGroup(128,203)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.(C2×C4)
C1C2C22C2×C4C22×C4C23×C4C2×C4⋊D4 — C24.(C2×C4)
C1C2C23 — C24.(C2×C4)
C1C22C23×C4 — C24.(C2×C4)
C1C2C22C22×C4 — C24.(C2×C4)

Generators and relations for C24.(C2×C4)
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e2=f4=d, ab=ba, ac=ca, eae-1=ad=da, faf-1=abc, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, ef=fe >

Subgroups: 412 in 161 conjugacy classes, 48 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C22⋊C8, C22⋊C8, C2×C22⋊C4, C2×C4⋊C4, C4⋊D4, C22×C8, C2×M4(2), C23×C4, C22×D4, C22×D4, C23⋊C8, C2×C22⋊C8, C24.4C4, C2×C4⋊D4, C24.(C2×C4)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C23⋊C4, C4.D4, C2×C22⋊C4, C8○D4, (C22×C8)⋊C2, C2×C23⋊C4, C2×C4.D4, C24.(C2×C4)

Smallest permutation representation of C24.(C2×C4)
On 32 points
Generators in S32
(1 10)(2 22)(3 23)(4 13)(5 14)(6 18)(7 19)(8 9)(11 32)(12 25)(15 28)(16 29)(17 27)(20 30)(21 31)(24 26)
(2 32)(4 26)(6 28)(8 30)(9 20)(11 22)(13 24)(15 18)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 14 5 10)(2 15 6 11)(3 16 7 12)(4 9 8 13)(17 27 21 31)(18 28 22 32)(19 29 23 25)(20 30 24 26)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)

G:=sub<Sym(32)| (1,10)(2,22)(3,23)(4,13)(5,14)(6,18)(7,19)(8,9)(11,32)(12,25)(15,28)(16,29)(17,27)(20,30)(21,31)(24,26), (2,32)(4,26)(6,28)(8,30)(9,20)(11,22)(13,24)(15,18), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;

G:=Group( (1,10)(2,22)(3,23)(4,13)(5,14)(6,18)(7,19)(8,9)(11,32)(12,25)(15,28)(16,29)(17,27)(20,30)(21,31)(24,26), (2,32)(4,26)(6,28)(8,30)(9,20)(11,22)(13,24)(15,18), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,14,5,10)(2,15,6,11)(3,16,7,12)(4,9,8,13)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );

G=PermutationGroup([[(1,10),(2,22),(3,23),(4,13),(5,14),(6,18),(7,19),(8,9),(11,32),(12,25),(15,28),(16,29),(17,27),(20,30),(21,31),(24,26)], [(2,32),(4,26),(6,28),(8,30),(9,20),(11,22),(13,24),(15,18)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,14,5,10),(2,15,6,11),(3,16,7,12),(4,9,8,13),(17,27,21,31),(18,28,22,32),(19,29,23,25),(20,30,24,26)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A···4F4G4H4I8A···8H8I8J8K8L
order122222222224···44448···88888
size111122224882···24884···48888

32 irreducible representations

dim11111112244
type++++++++
imageC1C2C2C2C2C4C4D4C8○D4C23⋊C4C4.D4
kernelC24.(C2×C4)C23⋊C8C2×C22⋊C8C24.4C4C2×C4⋊D4C2×C4⋊C4C22×D4C22×C4C22C4C22
# reps14111264822

Matrix representation of C24.(C2×C4) in GL6(𝔽17)

1600000
010000
0001600
0016000
00100162
005501
,
1600000
0160000
001000
000100
00107160
0007016
,
100000
010000
0016000
0001600
0000160
0000016
,
1600000
0160000
0016000
0001600
0000160
0000016
,
0160000
100000
0001600
001000
0000162
0000161
,
020000
1500000
0012510
001212115
0000010
00001210

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,10,5,0,0,16,0,0,5,0,0,0,0,16,0,0,0,0,0,2,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,10,0,0,0,0,1,7,7,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,16,16,0,0,0,0,2,1],[0,15,0,0,0,0,2,0,0,0,0,0,0,0,12,12,0,0,0,0,5,12,0,0,0,0,1,1,0,12,0,0,0,15,10,10] >;

C24.(C2×C4) in GAP, Magma, Sage, TeX

C_2^4.(C_2\times C_4)
% in TeX

G:=Group("C2^4.(C2xC4)");
// GroupNames label

G:=SmallGroup(128,203);
// by ID

G=gap.SmallGroup(128,203);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,723,352,1123,851,172]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^2=f^4=d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*b*c,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations

׿
×
𝔽